- 屋頂風(fēng)機(jī)240cm屋頂風(fēng)機(jī)83cm
- 145cm負(fù)壓風(fēng)機(jī)54寸玻璃鋼風(fēng)機(jī)
- 120cm負(fù)壓風(fēng)機(jī)46寸玻璃鋼風(fēng)機(jī)
- 100cm負(fù)壓風(fēng)機(jī)36寸玻璃鋼風(fēng)機(jī)
- 90cm負(fù)壓風(fēng)機(jī)32寸玻璃鋼風(fēng)機(jī)
- 75cm負(fù)壓風(fēng)機(jī)28寸玻璃鋼風(fēng)機(jī)
- 地溝風(fēng)機(jī)畜牧風(fēng)機(jī)
- 冷風(fēng)機(jī)/環(huán)?照{(diào)/移動(dòng)冷風(fēng)機(jī)
- 塑料水簾/紙水簾
- 玻璃鋼風(fēng)機(jī)外框|風(fēng)機(jī)風(fēng)葉加工
降溫設(shè)備風(fēng)機(jī)盤(pán)管控制的方案空氣動(dòng)力學(xué)
但是,由于這種采暖方式只基于對(duì)流換熱,而致使室內(nèi)達(dá)不到最佳的舒適水平,故只適用于人停留時(shí)間較短的場(chǎng)所,如:辦公室及賓館,而不用于普通住宅。由于增加了風(fēng)機(jī),提高了造價(jià)和運(yùn)行費(fèi)用,設(shè)備的維護(hù)和管理也較為復(fù)雜。
風(fēng)機(jī)盤(pán)管控制多采用就地控制的方案,分簡(jiǎn)單控制和溫度控制兩種。 簡(jiǎn)單控制:使用三速開(kāi)關(guān)直接手動(dòng)控制風(fēng)機(jī)的三速轉(zhuǎn)換與啟停。溫度控制:STC 系列溫控器根據(jù)設(shè)定溫度與實(shí)際檢測(cè)溫度的比較、運(yùn)算,自動(dòng)控制 STV 系列電動(dòng)兩 / 三通閥的開(kāi)閉;風(fēng)機(jī)的三速轉(zhuǎn)換。或直接控制風(fēng)機(jī)的三速轉(zhuǎn)換與啟停,從而通過(guò)控制工程水流或風(fēng)量達(dá)到恒溫的目的。
風(fēng)機(jī)盤(pán)管做為中央空調(diào)的末端設(shè)備,其質(zhì)量的好壞決定了室內(nèi)的空調(diào)效果。性能主要是送冷(熱)量的保障、送風(fēng)量的保障,噪音的數(shù)值比、冷凝水不泄漏及電器、鈑金件設(shè)計(jì)的合理性等等。
空氣動(dòng)力學(xué)是力學(xué)的一個(gè)分支,它主要研究物體在同氣體作相對(duì)運(yùn)動(dòng)情況下的受力特性、氣體流動(dòng)規(guī)律和伴隨發(fā)生的物理化學(xué)變化。它是在流體力學(xué)的基礎(chǔ)上,隨著航空工業(yè)和噴氣推進(jìn)技術(shù)的發(fā)展而成長(zhǎng)起來(lái)的一個(gè)學(xué)科。
空氣動(dòng)力學(xué)的發(fā)展簡(jiǎn)史
最早對(duì)空氣動(dòng)力學(xué)的研究,可以追溯到人類(lèi)對(duì)鳥(niǎo)或彈丸在飛行時(shí)的受力和力的作用方式的種種猜測(cè)。17世紀(jì)后期,荷蘭物理學(xué)家惠更斯首先估算出物體在空氣中運(yùn)動(dòng)的阻力;1726年,牛頓應(yīng)用力學(xué)原理和演繹方法得出:在空氣中運(yùn)動(dòng)的物體所受的力,正比于物體運(yùn)動(dòng)速度的平方和物體的特征面積以及空氣的密度。這一工作可以看作是空氣動(dòng)力學(xué)經(jīng)典理論的開(kāi)始。
1755年,數(shù)學(xué)家歐拉得出了描述無(wú)粘性流體運(yùn)動(dòng)的微分方程,即歐拉方程。這些微分形式的動(dòng)力學(xué)方程在特定條件下可以積分,得出很有實(shí)用價(jià)值的結(jié)果。19世紀(jì)上半葉,法國(guó)的納維和英國(guó)的斯托克斯提出了描述粘性不可壓縮流體動(dòng)量守恒的運(yùn)動(dòng)方程,后稱(chēng)為納維-斯托克斯方程。
到19世紀(jì)末,經(jīng)典流體力學(xué)的基礎(chǔ)已經(jīng)形成。20世紀(jì)以來(lái),隨著航空事業(yè)的迅速發(fā)展,空氣動(dòng)力學(xué)便從流體力學(xué)中發(fā)展出來(lái)并形成力學(xué)的一個(gè)新的分支。
航空要解決的首要問(wèn)題是如何獲得飛行器所需要的舉力、減小飛行器的阻力和提高它的飛行速度。這就要從理論和實(shí)踐上研究飛行器與空氣相對(duì)運(yùn)動(dòng)時(shí)作用力的產(chǎn)生及其規(guī)律。1894年,英國(guó)的蘭徹斯特首先提出無(wú)限翼展機(jī)翼或翼型產(chǎn)生舉力的環(huán)量理論,和有限翼展機(jī)翼產(chǎn)生舉力的渦旋理論等。但蘭徹斯特的想法在當(dāng)時(shí)并未得到廣泛重視。
約在1901~1910年間,庫(kù)塔和儒科夫斯基分別獨(dú)立地提出了翼型的環(huán)量和舉力理論,并給出舉力理論的數(shù)學(xué)形式,建立了二維機(jī)翼理論。1904年,德國(guó)的普朗特發(fā)表了著名的低速流動(dòng)的邊界層理論。該理論指出在不同的流動(dòng)區(qū)域中控制方程可有不同的簡(jiǎn)化形式。
邊界層理論極大地推進(jìn)了空氣動(dòng)力學(xué)的發(fā)展。普朗特還把有限翼展的三維機(jī)翼理論工程化,給出它的數(shù)學(xué)結(jié)果,從而創(chuàng)立了有限翼展機(jī)翼的舉力線理論。但它不能適用于失速、后掠和小展弦比的情況。1946年美國(guó)的瓊期提出了小展弦比機(jī)翼理論,利用這一理論和邊界層理論,可以足夠精確地求出機(jī)冀上的壓力分布和表面摩擦阻力。
近代航空和噴氣技術(shù)的迅速發(fā)展使飛行速度迅猛提高。在高速運(yùn)動(dòng)的情況下,必須把流體力學(xué)和熱力學(xué)這兩門(mén)學(xué)科結(jié)合起來(lái),才能正確認(rèn)識(shí)和解決高速空氣動(dòng)力學(xué)中的問(wèn)題。1887~1896年間,奧地利科學(xué)家馬赫在研究彈丸運(yùn)動(dòng)擾動(dòng)的傳播時(shí)指出:在小于或大于聲速的不同流動(dòng)中,彈丸引起的擾動(dòng)傳播特征是根本不同的。
在高速流動(dòng)中,流動(dòng)速度與當(dāng)?shù)芈曀僦仁且粋(gè)重要的無(wú)量綱參數(shù)。1929年,德國(guó)空氣動(dòng)力學(xué)家阿克萊特首先把這個(gè)無(wú)量綱參數(shù)與馬赫的名字聯(lián)系起來(lái),十年后,馬赫數(shù)這個(gè)特征參數(shù)在氣體動(dòng)力學(xué)中廣泛引用。
小擾動(dòng)在超聲速流中傳播會(huì)疊加起來(lái)形成有限量的突躍——激波。在許多實(shí)際超聲速流動(dòng)中也存在著激波。氣流通過(guò)激波流場(chǎng),參量發(fā)生突躍,熵增加而總能量保持不變。
英國(guó)科學(xué)家蘭金在1870年、法國(guó)科學(xué)家許貢紐在1887年分別獨(dú)立地建立了氣流通過(guò)激波所應(yīng)滿足的關(guān)系式,為超聲速流場(chǎng)的數(shù)學(xué)處理提供了正確的邊界條件。對(duì)于薄冀小擾動(dòng)問(wèn)題,阿克萊特在1925年提出了二維線化機(jī)冀理論,以后又相應(yīng)地出現(xiàn)了三維機(jī)翼的線化理論。這些超聲速流的線化理論圓滿地解決了流動(dòng)中小擾動(dòng)的影響問(wèn)題。
在飛行速度或流動(dòng)速度接近聲速時(shí),飛行器的氣動(dòng)性能發(fā)生急劇變化,阻力突增,升力驟降。飛行器的操縱性和穩(wěn)定性極度惡化,這就是航空史上著名的聲障。大推力發(fā)動(dòng)機(jī)的出現(xiàn)沖過(guò)了聲障,但并沒(méi)有很好地解決復(fù)雜的跨聲速流動(dòng)問(wèn)題。直至20世紀(jì)60年代以后,由于跨聲速巡航飛行、機(jī)動(dòng)飛行,以及發(fā)展高效率噴氣發(fā)動(dòng)機(jī)的要求,跨聲速流動(dòng)的研究更加受到重視,并有很大的發(fā)展。
遠(yuǎn)程導(dǎo)彈和人造衛(wèi)星的研制推動(dòng)了高超聲速空氣動(dòng)力學(xué)的發(fā)展。在50年代到60年代初,確立了高超聲速無(wú)粘流理論和氣動(dòng)力的工程計(jì)算方法。60年代初,高超聲速流動(dòng)數(shù)值計(jì)算也有了迅速的發(fā)展。通過(guò)研究這些現(xiàn)象和規(guī)律,發(fā)展了高溫氣體動(dòng)力學(xué)、高速邊界層理論和非平衡流動(dòng)理論等。
由于在高溫條件下全引起飛行器表面材料的燒蝕和質(zhì)量的引射,需要研究高溫氣體的多相流?諝鈩(dòng)力學(xué)的發(fā)展出現(xiàn)了與多種學(xué)科相結(jié)合的特點(diǎn)。
空氣動(dòng)力學(xué)發(fā)展的另一個(gè)重要方面是實(shí)驗(yàn)研究,包括風(fēng)洞等各種實(shí)驗(yàn)設(shè)備的發(fā)展和實(shí)驗(yàn)理論、實(shí)驗(yàn)方法、測(cè)試技術(shù)的發(fā)展。世界上第一個(gè)風(fēng)洞是英國(guó)的韋納姆在1871年建成的。到今天適用于各種模擬條件、目的、用途和各種測(cè)量方式的風(fēng)洞已有數(shù)十種之多,風(fēng)洞實(shí)驗(yàn)的內(nèi)容極為廣泛。
20世紀(jì)70年代以來(lái),激光技術(shù)、電子技術(shù)和電子計(jì)算機(jī)的迅速發(fā)展,極大地提高了空氣動(dòng)力學(xué)的實(shí)驗(yàn)水平和計(jì)算水平,促進(jìn)了對(duì)高度非線性問(wèn)題和復(fù)雜結(jié)構(gòu)的流動(dòng)的研究。
除了上述由航空航天事業(yè)的發(fā)展推進(jìn)空氣動(dòng)力學(xué)的發(fā)展之外,60年代以來(lái),由于交通、運(yùn)輸、建筑、氣象、環(huán)境保護(hù)和能源利用等多方面的發(fā)展,出現(xiàn)了工業(yè)空氣動(dòng)力學(xué)等分支學(xué)科。
空氣動(dòng)力學(xué)的研究?jī)?nèi)容
通常所說(shuō)的空氣動(dòng)力學(xué)研究?jī)?nèi)容是飛機(jī),導(dǎo)彈等飛行器在名種飛行條件下流場(chǎng)中氣體的速度、壓力和密度等參量的變化規(guī)律,飛行器所受的舉力和阻力等空氣動(dòng)力及其變化規(guī)律,氣體介質(zhì)或氣體與飛行器之間所發(fā)生的物理化學(xué)變化以及傳熱傳質(zhì)規(guī)律等。從這個(gè)意義上講,空氣動(dòng)力學(xué)可有兩種分類(lèi)法:
首先,根據(jù)流體運(yùn)動(dòng)的速度范圍或飛行器的飛行速度,空氣動(dòng)力學(xué)可分為低速空氣動(dòng)力學(xué)和高速空氣動(dòng)力學(xué)。通常大致以400千米/小時(shí)這一速度作為劃分的界線。在低速空氣動(dòng)力學(xué)中,氣體介質(zhì)可視為不可壓縮的,對(duì)應(yīng)的流動(dòng)稱(chēng)為不可壓縮流動(dòng)。大于這個(gè)速度的流動(dòng),須考慮氣體的壓縮性影響和氣體熱力學(xué)特性的變化。這種對(duì)應(yīng)于高速空氣動(dòng)力學(xué)的流動(dòng)稱(chēng)為可壓縮流動(dòng)。
其次,根據(jù)流動(dòng)中是否必須考慮氣體介質(zhì)的粘性,空氣動(dòng)力學(xué)又可分為理想空氣動(dòng)力學(xué)(或理想氣體動(dòng)力學(xué))和粘性空氣動(dòng)力學(xué)。
除了上述分類(lèi)以外,空氣動(dòng)力學(xué)中還有一些邊緣性的分支學(xué)科。例如稀薄氣體動(dòng)力學(xué)、高溫氣體動(dòng)力學(xué)等。
在低速空氣動(dòng)力學(xué)中,介質(zhì)密度變化很小,可視為常數(shù),使用的基本理論是無(wú)粘二維和三維的位勢(shì)流、翼型理論、舉力線理論、舉力面理論和低速邊界層理論等;對(duì)于亞聲速流動(dòng),無(wú)粘位勢(shì)流動(dòng)服從非線性橢圓型偏微分方程,研究這類(lèi)流動(dòng)的主要理論和近似方法有小擾動(dòng)線化方法,普朗特-格勞厄脫法則、卡門(mén)-錢(qián)學(xué)森公式和速度圖法,在粘性流動(dòng)方面有可壓縮邊界層理論;對(duì)于超聲速流動(dòng),無(wú)粘流動(dòng)所服從的方程是非線性雙曲型偏微分方程。
在超聲速流動(dòng)中,基本的研究?jī)?nèi)容是壓縮波、膨脹波、激波、普朗特-邁耶爾流動(dòng)、錐型流,等等。主要的理論處理方法有超聲速小擾動(dòng)理論、特征線法和高速邊界層理論等?缏曀贌o(wú)粘流動(dòng)可分外流和內(nèi)流兩大部分,流動(dòng)變化復(fù)雜,流動(dòng)的控制方程為非線性混合型偏微分方程,從理論上求解困難較大。
高超聲速流動(dòng)的主要特點(diǎn)是高馬赫數(shù)和大能量,在高超聲速流動(dòng)中,真實(shí)氣體效應(yīng)和激波與邊界層相互干擾問(wèn)題變得比較重要。高超聲速流動(dòng)分無(wú)粘流動(dòng)和高超聲速粘性流兩大方面。
工業(yè)空氣動(dòng)力學(xué)主要研究在大氣邊界層中,風(fēng)同各種結(jié)構(gòu)物和人類(lèi)活動(dòng)間的相互作用,以及大氣邊界層內(nèi)風(fēng)的特性、風(fēng)對(duì)建筑物的作用、風(fēng)引起的質(zhì)量遷移、風(fēng)對(duì)運(yùn)輸車(chē)輛的作用和風(fēng)能利用,以及低層大氣的流動(dòng)特性和各種顆粒物在大氣中的擴(kuò)散規(guī)律,特別是端流擴(kuò)散的規(guī)律,等等。
空氣動(dòng)力學(xué)的研究方法
空氣動(dòng)力學(xué)的研究,分理論和實(shí)驗(yàn)兩個(gè)方面。理論和實(shí)驗(yàn)研究?jī)烧弑舜嗣芮薪Y(jié)合,相輔相成。理論研究所依據(jù)的一般原理有:運(yùn)動(dòng)學(xué)方面,遵循質(zhì)量守恒定律;動(dòng)力學(xué)方面,遵循牛頓第二定律;能量轉(zhuǎn)換和傳遞方面,遵循能量守恒定律;熱力學(xué)方面,遵循熱力學(xué)第一和第二定律;介質(zhì)屬性方面,遵循相應(yīng)的氣體狀態(tài)方程和粘性、導(dǎo)熱性的變化規(guī)律,等等。
實(shí)驗(yàn)研究則是借助實(shí)驗(yàn)設(shè)備或裝置,觀察和記錄各種流動(dòng)現(xiàn)象,測(cè)量氣流同物體的相互作用,發(fā)現(xiàn)新的物理特點(diǎn)并從中找出規(guī)律性的結(jié)果。由于近代高速電子計(jì)算機(jī)的迅速發(fā)展,數(shù)值計(jì)算在研究復(fù)雜流動(dòng)和受力計(jì)算方面起著重要作用,高速電子計(jì)算機(jī)在實(shí)驗(yàn)研究中的作用也日益增大。因此,理論研究、實(shí)驗(yàn)研究、數(shù)值計(jì)算三方面的緊密結(jié)合是近代空氣動(dòng)力學(xué)研究的主要特征。
空氣動(dòng)力學(xué)研究的過(guò)程一般是:通過(guò)實(shí)驗(yàn)和觀察,對(duì)流動(dòng)現(xiàn)象和機(jī)理進(jìn)行分析,提出合理的力學(xué)模型,根據(jù)上述幾個(gè)方面的物理定律,提出描述流動(dòng)的基本方程和定解條件;然后根據(jù)實(shí)驗(yàn)結(jié)果,再進(jìn)一步檢驗(yàn)理論分析或數(shù)值結(jié)果的正確性和適用范圍,并提出進(jìn)一步深入進(jìn)行實(shí)驗(yàn)或理論研究的問(wèn)題。如此不斷反復(fù)、廣泛而深入地揭示空氣動(dòng)力學(xué)問(wèn)題的本質(zhì)。
20世紀(jì)70年代以來(lái),空氣動(dòng)力學(xué)發(fā)展較為活躍的領(lǐng)域是湍流、邊界層過(guò)渡、激波與邊界層相互干擾、跨聲速流動(dòng)、渦旋和分離流動(dòng)、多相流、數(shù)值計(jì)算和實(shí)驗(yàn)測(cè)試技術(shù)等等。此外,工業(yè)空氣動(dòng)力學(xué)、環(huán)境空氣動(dòng)力學(xué),以及考慮有物理化學(xué)變化的氣體動(dòng)力學(xué)也有很大的發(fā)展。
來(lái)源:佳工機(jī)電網(wǎng)
降溫設(shè)備
地溝風(fēng)機(jī)
屋頂負(fù)壓風(fēng)機(jī)
相關(guān)的主題文章: